Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.945
1.
Biol Pharm Bull ; 47(4): 868-871, 2024.
Article En | MEDLINE | ID: mdl-38644197

Restoration of blood flow in skeletal muscle after a prolonged period of ischemia induces muscular ischemia-reperfusion injury, leading to local injury/dysfunction in muscles followed by systemic inflammatory responses. However, preventive/curative agents for skeletal muscle ischemia injury are unavailable in clinics to date. Increasing evidence has validated that carbon monoxide (CO) prevents the progression of ischemia-reperfusion injury in various organs owing to its versatile bioactivity. Previously, we developed a bioinspired CO donor, CO-bound red blood cells (CO-RBC), which mimics the dynamics of RBC-associated CO in the body. In the present study, we have tested the therapeutic potential of CO-RBC in muscular injury/dysfunction and secondary systemic inflammation induced by skeletal muscle ischemia-reperfusion. The results indicate that CO-RBC rather than RBC alone suppressed elevation of plasma creatine phosphokinase, a marker of muscular injury, in rats subjected to both hind limbs ischemia-reperfusion. In addition, the results of the treadmill walking test revealed a significantly decreased muscular motor function in RBC-treated rats subjected to both hind limbs ischemia-reperfusion than that in healthy rats, however, CO-RBC treatment facilitated sustained muscular motor functions after hind limbs ischemia-reperfusion. Furthermore, CO-RBC rather than RBC suppressed the production of tumour necrosis factor (TNF)-α and interleukin (IL)-6, which were upregulated by muscular ischemia-reperfusion. Interestingly, CO-RBC treatment induced higher levels of IL-10 compared to saline or RBC treatments. Based on these findings, we suggest that CO-RBC exhibits a suppressive effect against skeletal muscle injury/dysfunction and systemic inflammatory responses after skeletal muscle ischemia-reperfusion.


Carbon Monoxide , Inflammation , Muscle, Skeletal , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Male , Inflammation/drug therapy , Erythrocytes/drug effects , Erythrocytes/metabolism , Rats , Creatine Kinase/blood , Hindlimb/blood supply , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Interleukin-6/metabolism , Interleukin-6/blood
2.
Commun Biol ; 7(1): 495, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658666

Parkinson's Disease (PD)-typical declines in gait coordination are possibly explained by weakness in bilateral cortical and muscular connectivity. Here, we seek to determine whether this weakness and consequent decline in gait coordination is affected by dopamine levels. To this end, we compare cortico-cortical, cortico-muscular, and intermuscular connectivity and gait outcomes between body sides in people with PD under ON and OFF medication states, and in older adults. In our study, participants walked back and forth along a 12 m corridor. Gait events (heel strikes and toe-offs) and electrical cortical and muscular activities were measured and used to compute cortico-cortical, cortico-muscular, and intermuscular connectivity (i.e., coherences in the alpha, beta, and gamma bands), as well as features characterizing gait performance (e.g., the step-timing coordination, length, and speed). We observe that people with PD, mainly during the OFF medication, walk with reduced step-timing coordination. Additionally, our results suggest that dopamine intake in PD increases the overall cortico-muscular connectivity during the stance and swing phases of gait. We thus conclude that dopamine corrects defective feedback caused by impaired sensory-information processing and sensory-motor integration, thus increasing cortico-muscular coherences in the alpha bands and improving gait.


Dopamine , Gait , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Parkinson Disease/drug therapy , Male , Dopamine/metabolism , Female , Aged , Gait/drug effects , Middle Aged , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology
3.
Physiol Rep ; 12(8): e16026, 2024 Apr.
Article En | MEDLINE | ID: mdl-38653584

High sodium intake is decisive in the incidence increase and prevalence of hypertension, which has an impact on skeletal muscle functionality. Diazoxide is an antihypertensive agent that inhibits insulin secretion and is an opener of KATP channels (adosine triphosphate sensitive potasium channels). For this reason, it is hypothesized that moderate-intensity exercise and diazoxide improve skeletal muscle function by reducing the oxidants in hypertensive rats. Male Wistar rats were assigned into eight groups: control (CTRL), diazoxide (DZX), exercise (EX), exercise + diazoxide (EX + DZX), hypertension (HTN), hypertension + diazoxide (HTN + DZX), hypertension + exercise (HTN + EX), and hypertension + exercise + diazoxide (HTN + EX + DZX). To induce hypertension, the rats received 8% NaCl dissolved in water orally for 30 days; in the following 8 weeks, 4% NaCl was supplied to maintain the pathology. The treatment with physical exercise of moderate intensity lasted 8 weeks. The administration dose of diazoxide was 35 mg/kg intraperitoneally for 14 days. Tension recording was performed on the extensor digitorum longus and the soleus muscle. Muscle homogenates were used to measure oxidants using fluorescent probe and the activity of antioxidant systems. Diazoxide and moderate-intensity exercise reduced oxidants and increased antioxidant defenses.


Antioxidants , Diazoxide , Hypertension , Muscle, Skeletal , Physical Conditioning, Animal , Rats, Wistar , Animals , Diazoxide/pharmacology , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Hypertension/metabolism , Hypertension/physiopathology , Physical Conditioning, Animal/physiology , Rats , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Oxidants/metabolism
4.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38668589

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Cloning, Molecular , Coral Snakes , Elapid Venoms , Muscle, Skeletal , Receptors, Nicotinic , Animals , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Elapid Venoms/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Amino Acid Sequence , Male
5.
Dis Model Mech ; 17(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38655653

Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.


Dexamethasone , Models, Biological , Muscle Contraction , Muscular Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Taurine , Proto-Oncogene Proteins c-akt/metabolism , Humans , Taurine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Muscle Contraction/drug effects , Dexamethasone/pharmacology , Muscular Diseases/pathology , Muscular Diseases/drug therapy , Signal Transduction/drug effects , Receptors, Glucocorticoid/metabolism , Muscle Strength/drug effects , Proteasome Endopeptidase Complex/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Organ Size/drug effects , Phosphorylation/drug effects , Adrenal Cortex Hormones/pharmacology , Ubiquitin/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Steroids/pharmacology
6.
Arch Pharm Res ; 47(4): 301-324, 2024 Apr.
Article En | MEDLINE | ID: mdl-38592582

Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.


Sarcopenia , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/therapy , Humans , Animals , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myostatin/antagonists & inhibitors , Myostatin/metabolism , Drug Development/methods
7.
Food Funct ; 15(8): 4564-4574, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38584588

This study aimed to investigate the potential of beef peptides (BPs) in mitigating muscle atrophy induced by dexamethasone (DEX) with underlying three mechanisms in vitro (protein degradation, protein synthesis, and the oxidative stress pathway). Finally, the anti-atrophic effect of BPs was enhanced through purification and isolation. BPs were generated using beef loin hydrolyzed with alcalase/ProteAX/trypsin, each at a concentration of 0.67%, followed by ultrafiltration through a 3 kDa cut-off. BPs (10-100 µg mL-1) dose-dependently counteracted the DEX-induced reductions in myotube diameters, differentiation, fusion, and maturation indices (p < 0.05). Additionally, BPs significantly reduced FoxO1 protein dephosphorylation, thereby suppressing muscle-specific E3 ubiquitin ligases such as muscle RING-finger containing protein-1 and muscle atrophy F-box protein in C2C12 myotubes at concentrations exceeding 25 µg mL-1 (p < 0.05). BPs also enhanced the phosphorylation of protein synthesis markers, including mTOR, 4E-BP1, and p70S6K1, in a dose-dependent manner (p < 0.05) and increased the mRNA expression of antioxidant enzymes. Fractionated peptides derived from BPs, through size exclusion and polarity-based fractionation, also demonstrated enhanced anti-atrophic effects compared to BPs. These peptides downregulated the mRNA expression of primary muscle atrophy markers while upregulated that of antioxidant enzymes. Specifically, peptides GAGAAGAPAGGA (MW 924.5) and AFRSSTKK (MW 826.4) were identified from fractionated peptides of BPs. These findings suggest that BPs, specifically the peptide fractions GAGAAGAPAGGA and AFRSSTKK, could be a potential strategy to mitigate glucocorticoid-induced skeletal muscle atrophy by reducing the E3 ubiquitin ligase activity.


Muscle Fibers, Skeletal , Muscular Atrophy , Oxidative Stress , Peptides , Animals , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Mice , Oxidative Stress/drug effects , Peptides/pharmacology , Cattle , Proteolysis/drug effects , Cell Line , Protein Biosynthesis/drug effects , Red Meat , Muscle Proteins/metabolism , Dexamethasone/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phosphorylation , TOR Serine-Threonine Kinases/metabolism
8.
Food Funct ; 15(8): 4575-4585, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38587267

Previous studies have shown that vitamin C (VC), an essential vitamin for the human body, can promote the differentiation of muscle satellite cells (MuSCs) in vitro and play an important role in skeletal muscle post-injury regeneration. However, the molecular mechanism of VC regulating MuSC proliferation has not been elucidated. In this study, the role of VC in promoting MuSC proliferation and its molecular mechanism were explored using cell molecular biology and animal experiments. The results showed that VC accelerates the progress of skeletal muscle post-injury regeneration by promoting MuSC proliferation in vivo. VC can also promote skeletal muscle regeneration in the case of atrophy. Using the C2C12 myoblast murine cell line, we observed that VC also stimulated cell proliferation. In addition, after an in vitro study establishing the occurrence of a physical interaction between VC and Pax7, we observed that VC also upregulated the total and nuclear Pax7 protein levels. This mechanism increased the expression of Myf5 (Myogenic Factor 5), a Pax7 target gene. This study establishes a theoretical foundation for understanding the regulatory mechanisms underlying VC-mediated MuSC proliferation and skeletal muscle regeneration. Moreover, it develops the application of VC in animal muscle nutritional supplements and treatment of skeletal muscle-related diseases.


Ascorbic Acid , Cell Proliferation , Muscle, Skeletal , Myoblasts , PAX7 Transcription Factor , Regeneration , Animals , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Mice , Cell Proliferation/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Regeneration/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Ascorbic Acid/pharmacology , Cell Line , Male , Mice, Inbred C57BL , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/drug effects , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics
9.
J Mater Chem B ; 12(16): 3917-3926, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38536012

The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.


Hydrogels , Muscle, Skeletal , Polyphenols , Polyvinyl Alcohol , Silicates , Starch , Tannins , Tannins/chemistry , Tannins/pharmacology , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Muscle, Skeletal/drug effects , Animals , Starch/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Silicates/chemistry , Silicates/pharmacology , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
10.
Cancer Chemother Pharmacol ; 93(5): 497-507, 2024 May.
Article En | MEDLINE | ID: mdl-38436714

PURPOSE: We aimed to investigate whether visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and skeletal muscle area (SMA) index are predictive for efficacy and hematological toxicity in ER + HER2-metastatic breast cancer (BC) patients who received CDK 4/6 inhibitors. METHODS: This retrospective cohort study analyzed 52 patients who were treated with CDK 4/6 inhibitors between January 2018 and February 2021. The values of VAT, SAT, SMA indices and hematological parameters were noted before the start, at the third and sixth months of this treatment. The skeletal muscle area (SMA) and adipose tissue measurements were calculated at the level of the third lumbar vertebra. A SMA-index value of <40 cm2/m2 was accepted as the threshold value for sarcopenia. RESULTS: Patients with sarcopenia had a worse progression-free survival (PFS) compared to patients without sarcopenia (19.6 vs. 9.0 months, p = 0.005). Patients with a high-VAT-index had a better PFS (20.4 vs. 9.3 months, p = 0.033). Only the baseline low-SMA- index (HR: 3.89; 95% CI: 1.35-11.25, p = 0.012) and baseline low-VAT-index (HR: 2.15; 95% CI: 1.02-4.53, p = 0.042) had significantly related to poor PFS in univariate analyses. The low-SMA-index was the only independent factor associated with poor PFS (HR: 3.99; 95% CI: 1.38-11.54, p = 0.011). No relationship was observed between body composition parameters and grade 3-4 hematological toxicity. CONCLUSION: The present study supported the significance of sarcopenia and low visceral adipose tissue as potential early indicators of poor PFS in patients treated with CDK 4/6 inhibitors.


Breast Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Obesity, Abdominal , Protein Kinase Inhibitors , Sarcopenia , Humans , Sarcopenia/chemically induced , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Retrospective Studies , Middle Aged , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Aged , Obesity, Abdominal/chemically induced , Adult , Progression-Free Survival , Intra-Abdominal Fat/drug effects , Neoplasm Metastasis , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Subcutaneous Fat/drug effects
11.
Food Funct ; 15(8): 4010-4020, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38501161

Cordyceps sinensis is a parasitic fungus known to induce immune responses. The impact of Cordyceps supplementation on stem cell homing and expansion to human skeletal muscle after exercise remains unexplored. In this study, we examined how pre-exercise Cordyceps supplementation influences cell infiltration, CD34+ cell recruitment, and Pax7+ cell expansion in human skeletal muscle after high-intensity interval exercise (HIIE) on a cycloergometer. A randomized, double-blind, placebo-controlled crossover study was conducted with 14 young adults (age: 24 ± 0.8 years). A placebo (1 g cornstarch) and Cordyceps (1 g Cordyceps sinensis) were administered before exercise (at 120% maximal aerobic power). Multiple biopsies were taken from the vastus lateralis for muscle tissue analysis before and after HIIE. This exercise regimen doubled the VEGF mRNA in the muscle at 3 h post-exercise (P = 0.006). A significant necrotic cell infiltration (+284%, P = 0.05) was observed 3 h after HIIE and resolved within 24 h. This response was substantially attenuated by Cordyceps supplementation. Moreover, we observed increases in CD34+ cells at 24 h post-exercise, notably accelerated by Cordyceps supplementation to 3 h (+51%, P = 0.002). This earlier response contributed to a four-fold expansion in Pax7+ cell count, as demonstrated by immunofluorescence double staining (CD34+/Pax7+) (P = 0.01). In conclusion, our results provide the first human evidence demonstrating the accelerated resolution of exercise-induced muscle damage by Cordyceps supplementation. This effect is associated with earlier stem cell recruitment into the damaged sites for muscle regeneration.


Cordyceps , Cross-Over Studies , Exercise , Muscle, Skeletal , Humans , Cordyceps/chemistry , Young Adult , Male , Exercise/physiology , Adult , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Double-Blind Method , Stem Cells/drug effects , Antigens, CD34/metabolism , Female , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
12.
Pflugers Arch ; 476(5): 797-808, 2024 May.
Article En | MEDLINE | ID: mdl-38368293

A common anthracycline antibiotic used to treat cancer patients is doxorubicin (DOX). One of the effects of DOX therapy is skeletal muscle fatigue. Our goal in this research was to study the beneficial effect of exercise on DOX-induced damaged muscle fibers and compare the effect of different exercise strategies (prophylactic, post- toxicity and combined) on DOX toxicity. Five groups were created from 40 male rats: group I, control group; group II, DOX was administered intraperitoneally for 2 weeks over 6 equal injections (each 2.5 mg/kg); group III, rats trained for 3 weeks before DOX; group IV, rats trained for 8 weeks after DOX; and group V, rats were trained for 3 weeks before DOX followed by 8 weeks after. Measures of oxidative damage (H2O2, catalase), inflammation (TNF-α), and glucose transporter 4 (GLUT4) expression on skeletal muscle were assessed. Also, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was estimated. Skeletal performance was evaluated by contraction time (CT), half relaxation time (1/2 RT), and force-frequency relationship by the end of this research. The current study demonstrated a detrimental effect of DOX on skeletal performance as evidenced by a significant increase in CT and 1/2 RT compared to control; in addition, H2O2, TNF-α, and HOMA-IR were significantly increased with a significant decrease in GLUT4 expression and catalase activity. Combined exercise therapy showed a remarkable improvement in skeletal muscle performance, compared to DOX, CT, and 1/2 RT which were significantly decreased; H2O2 and TNF-α were significantly decreased unlike catalase antioxidant activity that significantly increased; in addition, skeletal muscle glucose metabolism was significantly improved as GLUT4 expression significantly increased and HOMA-IR was significantly decreased. Exercise therapy showed significant improvement in all measured parameters relative to DOX. However, combined exercise therapy showed the best improvement relative to both pre-exercise and post-exercise groups.


Doxorubicin , Glucose Transporter Type 4 , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Doxorubicin/toxicity , Doxorubicin/adverse effects , Male , Rats , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Glucose Transporter Type 4/metabolism , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Muscular Diseases/chemically induced , Muscular Diseases/metabolism , Rats, Wistar , Antibiotics, Antineoplastic/toxicity , Antibiotics, Antineoplastic/adverse effects , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Insulin Resistance , Catalase/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
J Am Nutr Assoc ; 43(4): 384-396, 2024.
Article En | MEDLINE | ID: mdl-38241335

Objective: This overview of systematic reviews (OoSRs) aimed, firstly, to systematically review, summarize, and appraise the findings of published systematic reviews with or without meta-analyses that investigate the effects of branched-chain amino acids (BCAA) on post-exercise recovery of muscle damage biomarkers, muscle soreness, and muscle performance. The secondary objective was to re-analyze and standardize the results of meta-analyses using the random-effects Hartung-Knapp-Sidik-Jonkman (HKSJ) method.Methods: The methodological quality of the reviews was assessed using A Measurement Tool to Assess Systematic Reviews 2.We searched on five databases (i.e., PubMed, Web of Science, Scopus, SPORTDiscus, ProQuest) for systematic reviews with or without meta-analyses that investigated the effects of BCAA supplementation on the post-exercise recovery of muscle damage biomarkers, muscle soreness, and muscle performance.Results: Eleven systematic reviews (seven with meta-analyses) of individual studies were included. Evidence suggests BCAA ingestion attenuates creatine kinase (CK) levels (medium effects) and muscle soreness (small effects) immediately post-exercise and accelerates their recovery process, with trivial-to-large effects for CK levels and small-to-large effects for muscle soreness. BCAA supplementation has no effect on lactate dehydrogenase, myoglobin, and muscle performance recovery. The re-analyses with HKSJ method using the original data reported a slight change in results significance, concluding the same evidence as the original results. The major flaws found in the analyzed reviews were the absence of justification for excluding studies, and the lack of provision of sources of funding for primary studies and sources of conflict of interest and/or funding description.Conclusions: BCAA supplementation is an effective method to reduce post-exercise muscle damage biomarkers, particularly CK levels, and muscle soreness, with no effect on muscle performance. Future systematic reviews with/without meta-analyses, with greater methodological rigor, are needed.


This is the first overview of systematic reviews investigating the impact of BCAA supplementation on muscle damage biomarkers, muscle soreness, and muscle performance post-exercise recovery.BCAA supplementation reduces creatine kinase levels and muscle soreness, especially when consuming a high dose of BCAA longitudinally.BCAA supplementation has no effect on muscle performance post-exercise recovery.


Amino Acids, Branched-Chain , Dietary Supplements , Exercise , Muscle, Skeletal , Myalgia , Amino Acids, Branched-Chain/administration & dosage , Humans , Exercise/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Biomarkers/blood , Creatine Kinase/blood , 60460
14.
Nature ; 619(7968): 143-150, 2023 Jul.
Article En | MEDLINE | ID: mdl-37380764

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Energy Metabolism , Growth Differentiation Factor 15 , Muscle, Skeletal , Weight Loss , Animals , Humans , Mice , Appetite Depressants/metabolism , Appetite Depressants/pharmacology , Appetite Depressants/therapeutic use , Caloric Restriction , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Eating/drug effects , Energy Metabolism/drug effects , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Receptors, Adrenergic, beta/metabolism , Weight Loss/drug effects
15.
J Biol Chem ; 299(6): 104810, 2023 06.
Article En | MEDLINE | ID: mdl-37172729

RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.


Gene Expression Profiling , Internet , Isothiocyanates , RNA-Seq , Software , Sulfoxides , Animals , Mice , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , RNA-Seq/methods , RNA-Seq/standards , Organ Specificity/drug effects , Reproducibility of Results , Mice, Obese , Unfolded Protein Response/drug effects , Liver/drug effects , Muscle, Skeletal/drug effects , Antioxidants/metabolism , Data Visualization
16.
Nat Commun ; 14(1): 2779, 2023 05 15.
Article En | MEDLINE | ID: mdl-37188705

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Aging , Antidepressive Agents , Harmine , Mitochondria , Mitophagy , Monoamine Oxidase , Receptors, GABA-A , Harmine/analogs & derivatives , Harmine/pharmacology , Antidepressive Agents/pharmacology , Mitochondria/drug effects , Mitophagy/drug effects , Muscle Fibers, Skeletal/drug effects , AMP-Activated Protein Kinase Kinases/metabolism , Muscle, Skeletal/drug effects , Liver/drug effects , Aging/drug effects , Insulin Resistance , Glucose Intolerance/metabolism , Prediabetic State/metabolism , Monoamine Oxidase/metabolism , Receptors, GABA-A/metabolism , Longevity/drug effects , Caenorhabditis elegans , Drosophila melanogaster , Frailty/prevention & control , Physical Conditioning, Animal , Models, Animal , Male , Female , Animals , Mice , Fatty Liver/metabolism , Adipose Tissue, Brown/drug effects
17.
Arthritis Res Ther ; 25(1): 58, 2023 04 11.
Article En | MEDLINE | ID: mdl-37041609

BACKGROUND: We examined the association between levothyroxine use and longitudinal MRI biomarkers for thigh muscle mass and composition in at-risk participants for knee osteoarthritis (KOA) and their mediatory role in subsequent KOA incidence. METHODS: Using the Osteoarthritis Initiative (OAI) data, we included the thighs and corresponding knees of participants at risk but without established radiographic KOA (baseline Kellgren-Lawrence grade (KL) < 2). Levothyroxine users were defined as self-reported use at all annual follow-up visits until the 4th year and were matched with levothyroxine non-users for potential confounders (KOA risk factors, comorbidities, and relevant medications covariates) using 1:2/3 propensity score (PS) matching. Using a previously developed and validated deep learning method for thigh segmentation, we assessed the association between levothyroxine use and 4-year longitudinal changes in muscle mass, including cross-sectional area (CSA) and muscle composition biomarkers including intra-MAT (within-muscle fat), contractile percentage (non-fat muscle CSA/total muscle CSA), and specific force (force per CSA). We further assessed whether levothyroxine use is associated with an 8-year risk of standard KOA radiographic (KL ≥ 2) and symptomatic incidence (incidence of radiographic KOA and pain on most of the days in the past 12 months). Finally, using a mediation analysis, we assessed whether the association between levothyroxine use and KOA incidence is mediated via muscle changes. RESULTS: We included 1043 matched thighs/knees (266:777 levothyroxine users:non-users; average ± SD age: 61 ± 9 years, female/male: 4). Levothyroxine use was associated with decreased quadriceps CSAs (mean difference, 95%CI: - 16.06 mm2/year, - 26.70 to - 5.41) but not thigh muscles' composition (e.g., intra-MAT). Levothyroxine use was also associated with an increased 8-year risk of radiographic (hazard ratio (HR), 95%CI: 1.78, 1.15-2.75) and symptomatic KOA incidence (HR, 95%CI: 1.93, 1.19-3.13). Mediation analysis showed that a decrease in quadriceps mass (i.e., CSA) partially mediated the increased risk of KOA incidence associated with levothyroxine use. CONCLUSIONS: Our exploratory analyses suggest that levothyroxine use may be associated with loss of quadriceps muscle mass, which may also partially mediate the increased risk of subsequent KOA incidence. Study interpretation should consider underlying thyroid function as a potential confounder or effect modifier. Therefore, future studies are warranted to investigate the underlying thyroid function biomarkers for longitudinal changes in the thigh muscles.


Osteoarthritis, Knee , Quadriceps Muscle , Thyroxine , Aged , Female , Humans , Male , Middle Aged , Biomarkers , Muscle, Skeletal/drug effects , Osteoarthritis, Knee/complications , Quadriceps Muscle/drug effects , Thyroxine/adverse effects , Thyroxine/therapeutic use
19.
Cells ; 12(6)2023 03 17.
Article En | MEDLINE | ID: mdl-36980269

Cantú syndrome (CS) is caused by the gain of function mutations in the ABCC9 and KCNJ8 genes encoding, respectively, for the sulfonylureas receptor type 2 (SUR2) and the inwardly rectifier potassium channel 6.1 (Kir6.1) of the ATP-sensitive potassium (KATP) channels. CS is a multi-organ condition with a cardiovascular phenotype, neuromuscular symptoms, and skeletal malformations. Glibenclamide has been proposed for use in CS, but even in animals, the drug is incompletely effective against severe mutations, including the Kir6.1wt/V65M. Patch-clamp experiments showed that zoledronic acid (ZOL) fully reduced the whole-cell KATP currents in bone calvaria cells from wild type (WT/WT) and heterozygous Kir6.1wt/V65MCS mice, with IC50 for ZOL block < 1 nM in each case. ZOL fully reduced KATP current in excised patches in skeletal muscle fibers in WT/WT and CS mice, with IC50 of 100 nM in each case. Interestingly, KATP currents in the bone of heterozygous SUR2wt/A478V mice were less sensitive to ZOL inhibition, showing an IC50 of ~500 nM and a slope of ~0.3. In homozygous SUR2A478V/A478V cells, ZOL failed to fully inhibit the KATP currents, causing only ~35% inhibition at 100 µM, but was responsive to glibenclamide. ZOL reduced the KATP currents in Kir6.1wt/VMCS mice in both skeletal muscle and bone cells but was not effective in the SUR2[A478V] mice fibers. These data indicate a subunit specificity of ZOL action that is important for appropriate CS therapies.


Muscle, Skeletal , Zoledronic Acid , Animals , Mice , Adenosine Triphosphate , Disease Models, Animal , Glyburide/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Zoledronic Acid/pharmacology , KATP Channels/drug effects , KATP Channels/metabolism , Sulfonylurea Receptors/drug effects , Sulfonylurea Receptors/metabolism
20.
J Nutr Biochem ; 115: 109277, 2023 05.
Article En | MEDLINE | ID: mdl-36739096

Selenomethionine (Se-Met) has many beneficial effects on higher animals and human, and can regulate cellular physiology through distinct signaling pathways. However, the role and molecular mechanism of Se-Met in skeletal muscle growth remains unclear. In this study, we observed the effects of Se-Met on C2C12 myoblasts and skeletal muscle growth of mice, and explored the corresponding molecular mechanism. Se-Met affected proliferation and protein synthesis of C2C12 myoblasts in a hormesis type of relationship, and had an optimal stimulatory effect at 50 µM concentration. Se-Met also affected mTOR, ANXA2, and PKCα phosphorylation in the same manner. ANXA2 knockdown blocked the stimulation of Se-Met on cell proliferation and protein synthesis and inhibition of Se-Met on autophagy of C2C12 myoblasts. Western blotting analysis showed that PI3K inhibition blocked the stimulation of Se-Met on mTOR phosphorylation. ANXA2 knockdown further blocked the stimulation of Se-Met on PI3K and mTOR phosphorylation. Point mutation experiment showed that ANXA2 mediated the stimulation of Se-Met on the PI3K-mTOR signaling through phosphorylation at Ser26. PKCα interacted with ANXA2, and PKCα knockdown blocked the stimulation of Se-Met on ANXA2 phosphorylation at Ser26. Se-Met addition (7.5mg/kg diet, 4 weeks) increased mouse carcass weight, promoted gastrocnemius skeletal muscle growth and ANXA2 and mTOR phosphorylation in this tissue. Collectively, our findings reveal that Se-Met can promote proliferation and protein synthesis of myoblasts and skeletal muscle growth through ANXA2 phosphorylation.


Annexin A2 , Muscle, Skeletal , Myoblasts , Selenomethionine , Animals , Humans , Mice , Annexin A2/genetics , Annexin A2/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/genetics , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/pharmacology , Selenomethionine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics
...